venous thromboembolic disease is a major cause of mortality in the United States, with pulmonary embolism (PE) being the most severe complication of the disease. PE has been reported to result in as many as 240,000 deaths per year. The primary means of prevention and therapy for venous thromboembolism (VTE) is pharmacologic, including a regimen of anticoagulant agents. Although anticoagulants can be effective for treating VTE, in patients with deep vein thrombosis (DVT) or PE in which anticoagulants are contraindicated or there are complications, recurrent PE, or failure of anticoagulants, the use of an inferior vena cava (IVC) filter is recommended as an alternative treatment. In addition to these traditional indications for IVC filter placement, patients who are at high risk for developing PE may have a prophylactic indication for IVC filter placement.

RETRIEVABLE IVC FILTERS

There are a number of situations in which it may be desirable for a physician to remove an IVC filter once implanted. The risk of PE may be relatively short-term, thus the need for the filter is required for only a short period of time. The seminal Decousus article clearly showed that the advantage of continued IVC filtration decreased versus nonfiltration after the initial risk of PE had passed 2 years after implantation. The removable filter era began in 2003, and there are now several such devices approved for use in the United States. Filters are approved for safe retrieval based on a range of days postimplantation within their Instructions for Use granted upon US Food and Drug Administration (FDA) approval.

The longest labeled explantation data are as follows: Günther Tulip (Cook Medical, Bloomington, IN), 20 days; OptEase (Cordis Corporation, Bridgewater, NJ), 23 days; G2 (Bard Peripheral Vascular, Tempe, AZ), 300 days; Celect (Cook Medical), 365 days. The longest explantation data recorded in the literature for these devices are: Günther Tulip, 494 days; OptEase, 59 days; G2, 1,463 days; Celect, 466 days; and ALN (ALN Implants Chirurgicaux, Ghisonaccia, France), 722 days.
We believe that long-term retrieval reviews are of interest in the literature because they explore outcomes for potential clinical applications that were not directly studied during the FDA-approval process. This article discusses the successful removal of the Option IVC filter (Angiotech [designed by Rex Medical], Vancouver, BC, Canada) at 1,184 days after initial implantation.

The Option IVC Filter

The Option IVC Filter was simultaneously approved by the FDA for permanent and retrievable indications. The filter has a bell-shaped, three-dimensional configuration with parallel struts that are designed to add a centering capability. The Option’s retention hooks are laser cut from the nitinol hypotube and have a talon-like configuration. When released from the delivery system, the hooks rotate out radially to engage the caval wall. This radial rotation of the retention hooks with a fixed, non-flexible “ankle” provide stability for the filter, and a nested retrieval hook at the apex allows for delivery through a 6.5-F delivery system. The curved delivery system is designed to allow the interventionist to keep the retrieval apex in the center of the lumen.

The Option first-in-human pilot study was performed in Paraguay from September 2006 to May 2007, and the United States multicenter Option Investigational Device Exemption (IDE) FDA trial was performed under the direction of Matthew Johnson, MD, at Indiana University. At the completion of the pilot study in Paraguay, there had been three filters removed after 1 year of placement, with the longest being at 367 days. In the 100-patient prospective IDE trial, the caval patency was 97% (97 of 100), the retrieval success rate was 92% (36 of 39), and the range of retrievals was from 1 to 175 days (mean, 67 d).

Prior to the case described in this article, the longest Option explantations to date were two retrievals at 366 days and at 367 days. There has been no evidence of extravasation, dissection, or caval trauma to any patients in the first-in-human or Option IDE trials throughout the entire explantation aspects of either phases of study.

Case Report

A 55-year-old woman with a history of morbid obesity, chronic obstructive pulmonary disease, DVT, and venous insufficiency presented with recent lower extremity fracture. She was also high risk for further DVT, and an Option filter was placed via the right internal jugular vein in a 20-mm cava with the apex at the level of the renal veins in the infrarenal IVC (Figures 1 and 2). The patient did well postprocedurally and was followed per study protocol. She had no clinical evidence of complications related to the filter and returned for annual radiographic follow-up visits, confirming no evidence of filter migration. At her 3-year follow-up visit, she requested that her filter be removed electively; she had no evidence of DVT on her lower extremity Doppler study, and she was ambulatory. After obtaining informed consent, we attempted the removal.

Via the right internal jugular approach, an 8-F, 90-cm braided Raabe sheath (Cook Medical) was placed, and a cavogram was obtained in anteroposterior and bilateral oblique projections using a measuring pigtail catheter. The Option filter was widely patent without evidence of migration or fracture, and the apex was confirmed to be centered within the lumen (Figure 3). After the retrieval hook was snared using an Ensnare (Merit Medical, South Jordan, UT), the braided sheath was advanced caudally via the jugular approach to encircle and gather the vertical filter struts. This “sheath-down” technique allows the radial hooks to rotate back into their original en face position. There is typically a 1- to 2-cm “incorporation zone” that represents the residual fibrous overgrowth over the retention hooks at the inferior aspect of the centering struts noted on fluoroscopy during retrieval.

The Option filter was then removed from the caval wall in the cephalad direction using a tug of approximately 5 ft/lb of force. The sheath-down maneuver was then completed with the retention hooks rotating back into their en face position, and the filter was brought completely within the retrieval sheath and removed.
Indications for Use
The Medtronic Vascular Complete SE Vascular Stent System is intended for improving luminal diameter in patients with iliac stenosis in previously unstented lesions with vessel reference diameters between 4.5 mm and 9.5 mm and lesion lengths up to 90 mm. The stent is intended as a permanent implant.

Contraindications
There are no known contraindications.

Warnings/Precautions
The following complications may be associated with the use of iliac stenting devices or iliac angioplasty: abrupt stent closure; allergic reaction (contrast medium, drug, stent or filter components (e.g. nickel, titanium) may suffer an allergic reaction to the Complete SE Vascular Stent System is intended for use by physicians familiar with iliac stenting techniques and the risks associated with stenting. Thorbogenicity evaluations were conducted using a heparinized model. If your patient cannot be adequately anticoagulated, it is unknown whether thrombus formation may occur with this product. The use of overlapping stents with the Complete SE Vascular Stent System has not been formally evaluated in a clinical trial. Caution must be taken when crossing the stented area with ancillary equipment to avoid dislodgment of the stent.

Potential Adverse Events
The following complications may be associated with the use of iliac stenting devices or iliac angioplasty: abrupt stent closure; allergic reaction (contrast medium, drug, stent or filter

or another. There was no difference in the force required to explant the Option filter between 367 days and 1,184 days. This 3.2-year retrieval of the Option filter suggests that long-term explantation success at this duration does not necessarily require sacrifice in filter design to prevent filter migration and maintain structural integrity, caval patency, and long-term retrievability.

James F. McGuckin, MD, is Medical Director of the Philadelphia Vascular Institute and Vascular Access Centers and Founder of Rex Medical. Dr. McGuckin may be reached at (609) 882-1770; jamesmcguckin@earthlink.net.


www.medtronic.com
www.medtronicstents.com

Medtronic CardioVascular
3576 Unoclo Place
Santa Rosa, CA 95403
USA
Tel: 707.525.0111

CardioVascular LifeLine
Customer Support
Phone: 877.526.7890
Fax: 763.526.7890

Product Services
Tel: 888.283.7868
Fax: 800.838.3103